Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38589590

RESUMO

Numerous low-income groups and rural communities depend on fish as an inexpensive protein source worldwide, especially in developing countries. These communities are constantly exposed to various pollutants when they frequently consume polluted fish. The largest river basin in South Africa is the Orange-Vaal River basin, and several anthropogenic impacts, especially gold mining activities and industrial and urban effluents, affect this basin. The Department of Environment, Forestry and Fisheries in South Africa has approved the much-anticipated National Freshwater (Inland) Wild Capture Fisheries Policy in 2021. The aims of this study were (1) to analyze element concentrations in the widely distributed Clarias gariepinus from six sites from the Orange-Vaal River basin and (2) to determine the carcinogenic and non-carcinogenic human health risks associated with fish consumption. The bioaccumulation of eight potentially toxic elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) was assessed in C. gariepinus from sites with different anthropogenic sources. The human health risks were determined to assess the potential risks posed by consuming contaminated C. gariepinus from these sites. Carcinogenic health risks were associated with fish consumption, where it ranged between 21 and 75 out of 10,000 people having the probability to develop cancer from As exposure. The cancer risk between the sites ranged between 1 and 7 out of 10,000 people to developing cancer from Cr exposure. A high probability of adverse non-carcinogenic health risks is expected if the hazard quotient (HQ) is higher than one. The HQ in C. gariepinus from the six sites ranged between 1.5 and 5.6 for As, while for Hg, it was between 1.8 and 5.1. These results highlight the need for monitoring programs of toxic pollutants in major river systems and impoundments in South Africa, especially with the new fisheries policy, as there are possible human health risks associated with the consumption of contaminated fish.

2.
Sci Total Environ ; 926: 171849, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537828

RESUMO

Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.


Assuntos
Ecossistema , Rios , Animais , Invertebrados/fisiologia , Água Doce , Cloreto de Sódio
3.
Parasite ; 30: 52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015008

RESUMO

Metabarcoding is a powerful tool to detect classical, and well-known "long-branch" Microsporidia in environmental samples. Several primer pairs were developed to target these unique microbial parasites, the majority of which remain undetected when using general metabarcoding primers. Most of these Microsporidia-targeting primer pairs amplify fragments of different length of the small subunit ribosomal RNA (SSU-rRNA) gene. However, we lack a broad comparison of the efficacy of those primers. Here, we conducted in silico PCRs with three short-read (which amplify a few-hundred base pairs) and two long-read (which amplify over a thousand base pairs) metabarcoding primer pairs on a variety of publicly available Microsporidia sensu lato SSU-rRNA gene sequences to test which primers capture most of the Microsporidia diversity. Our results indicate that the primer pairs do result in slight differences in inferred richness. Furthermore, some of the reverse primers are also able to bind to microsporidian subtaxa beyond the classical Microsporidia, which include the metchnikovellidan Amphiamblys spp., the chytridiopsid Chytridiopsis typographi and the "short-branch" microsporidian Mitosporidium daphniae.


Title: Comparaison des amorces ciblant les Microsporidies pour le séquençage de l'ADN environnemental. Abstract: Le métabarcoding est un outil puissant pour détecter les microsporidies classiques et bien connues à « longues branches ¼ dans les échantillons environnementaux. Plusieurs paires d'amorces ont été développées pour cibler ces parasites microscopiques exceptionnels, dont la majorité restent indétectables lors de l'utilisation d'amorces générales de métabarcoding. La plupart de ces paires d'amorces ciblant les microsporidies amplifient des fragments de différentes longueurs du gène de la petite sous-unité de l'ARN ribosomal (SSU-rRNA). Cependant, nous manquons d'une comparaison générale de l'efficacité de ces amorces. Ici, pour tester quelles amorces capturent la plus grande partie de la diversité des microsporidies, nous avons réalisé des PCR in silico avec trois paires d'amorces de métabarcoding à lecture courte (qui amplifient quelques centaines de paires de bases) et deux paires d'amorces de métabarcoding à lecture longue (qui amplifient plus d'un millier de bases), sur une variété de séquences du gène SSU-rRNA de Microsporidia sensu lato accessibles au public. Nos résultats indiquent que les paires d'amorces entraînent de légères différences dans la richesse déduite. En outre, certaines des amorces inverses sont également capables de se lier à des sous-taxons de microsporidies au-delà des Microsporidia classiques, notamment les Metchnikovellidae Amphiamblys spp., le Chytridiopsida Chytridiopsis typographi et la microsporidie à « branches courtes ¼ Mitosporidium daphniae.


Assuntos
DNA Ambiental , Microsporídios , Animais , Microsporídios/genética , Análise de Sequência de DNA , Filogenia
4.
Adv Healthc Mater ; 12(30): e2302084, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37661312

RESUMO

The bactericidal effects of silver nanoparticles (Ag NPs) against infectious strains of multiresistant bacteria is a well-studied phenomenon, highly relevant for many researchers and clinicians battling bacterial infections. However, little is known about the uptake of the Ag NPs into the bacteria, the related uptake mechanisms, and how they are connected to antimicrobial activity. Even less information is available on AgAu alloy NPs uptake. In this work, the interactions between colloidal silver-gold alloy nanoparticles (AgAu NPs) and Staphylococcus aureus (S. aureus) using advanced electron microscopy methods are studied. The localization of the nanoparticles is monitored on the membrane and inside the bacterial cells and the elemental compositions of intra- and extracellular nanoparticle species. The findings reveal the formation of pure silver nanoparticles with diameters smaller than 10 nm inside the bacteria, even though those particles are not present in the original colloid. This finding is explained by a local RElease PEnetration Reduction (REPER) mechanism of silver cations emitted from the AgAu nanoparticles, emphasized by the localization of the AgAu nanoparticles on the bacterial membrane by aptamer targeting ligands. These findings can deepen the understanding of the antimicrobial effect of nanosilver, where the microbes are defusing the attacking silver ions via their reduction, and aid in the development of suitable therapeutic approaches.


Assuntos
Ligas de Ouro , Nanopartículas Metálicas , Ligas de Ouro/farmacologia , Prata/farmacologia , Staphylococcus aureus , Ligas/farmacologia , Ouro/farmacologia , Bactérias , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
5.
Sci Total Environ ; 903: 167457, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37777125

RESUMO

Wastewater treatment processes can eliminate many pollutants, yet remainder pollutants contain organic compounds and microorganisms released into ecosystems. These remainder pollutants have the potential to adversely impact downstream ecosystem processes, but their presence is currently not being monitored. This study was set out with the aim of investigating the effectiveness and sensitivity of non-target screening of chemical compounds, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding techniques for detecting treated wastewater in receiving waters. We aimed at assessing the impact of introducing 33 % treated wastewater into a triplicated large-scale mesocosm setup during a 10-day exposure period. Discharge of treated wastewater significantly altered the chemical signature as well as the microeukaryotic and prokaryotic diversity of the mesocosms. Non-target screening, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding detected these changes with significant covariation of the detected pattern between methods. The 18S V9 rRNA gene metabarcoding exhibited superior sensitivity immediately following the introduction of treated wastewater and remained one of the top-performing methods throughout the study. Full-length 16S rRNA gene metabarcoding demonstrated sensitivity only in the initial hour, but became insignificant thereafter. The non-target screening approach was effective throughout the experiment and in contrast to the metabarcoding methods the signal to noise ratio remained similar during the experiment resulting in an increasing relative strength of this method. Based on our findings, we conclude that all methods employed for monitoring environmental disturbances from various sources are suitable. The distinguishing factor of these methods is their ability to detect unknown pollutants and organisms, which sets them apart from previously utilized approaches and allows for a more comprehensive perspective. Given their diverse strengths, particularly in terms of temporal resolution, these methods are best suited as complementary approaches.

6.
Trends Parasitol ; 39(9): 749-759, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451950

RESUMO

Wild animals are usually infected with parasites that can alter their hosts' trophic niches in food webs as can be seen from stable isotope analyses of infected versus uninfected individuals. The mechanisms influencing these effects of parasites on host isotopic values are not fully understood. Here, we develop a conceptual model to describe how the alteration of the resource intake or the internal resource use of hosts by parasites can lead to differences of trophic and isotopic niches of infected versus uninfected individuals and ultimately alter resource flows through food webs. We therefore highlight that stable isotope studies inferring trophic positions of wild organisms in food webs would benefit from routine identification of their infection status.


Assuntos
Parasitos , Animais , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Cadeia Alimentar , Animais Selvagens
7.
Environ Toxicol Chem ; 42(9): 1946-1959, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37283208

RESUMO

Parasites can affect their hosts in various ways, and this implies that parasites may act as additional biotic stressors in a multiple-stressor scenario, resembling conditions often found in the field if, for example, pollutants and parasites occur simultaneously. Therefore, parasites represent important modulators of host reactions in ecotoxicological studies when measuring the response of organisms to stressors such as pollutants. In the present study, we introduce the most important groups of parasites occurring in organisms commonly used in ecotoxicological studies ranging from laboratory to field investigations. After briefly explaining their life cycles, we focus on parasite stages affecting selected ecotoxicologically relevant target species belonging to crustaceans, molluscs, and fish. We included ecotoxicological studies that consider the combination of effects of parasites and pollutants on the respective model organism with respect to aquatic host-parasite systems. We show that parasites from different taxonomic groups (e.g., Microsporidia, Monogenea, Trematoda, Cestoda, Acanthocephala, and Nematoda) clearly modulate the response to stressors in their hosts. The combined effects of environmental stressors and parasites can range from additive, antagonistic to synergistic. Our study points to potential drawbacks of ecotoxicological tests if parasite infections of test organisms, especially from the field, remain undetected and unaddressed. If these parasites are not detected and quantified, their physiological effects on the host cannot be separated from the ecotoxicological effects. This may render this type of ecotoxicological test erroneous. In laboratory tests, for example to determine effect or lethal concentrations, the presence of a parasite can also have a direct effect on the concentrations to be determined and thus on the subsequently determined security levels, such as predicted no-effect concentrations. Environ Toxicol Chem 2023;42:1946-1959. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Poluentes Ambientais , Nematoides , Parasitos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Peixes , Poluentes Químicos da Água/toxicidade
8.
Parasite ; 30: 23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350678

RESUMO

Although interest in Acanthocephala seems to have reached only a small community of researchers worldwide, we show in this opinion article that this group of parasites is composed of excellent model organisms for studying key questions in parasite molecular biology and cytogenetics, evolutionary ecology, and ecotoxicology. Their shared ancestry with free-living rotifers makes them an ideal group to explore the origins of the parasitic lifestyle and evolutionary drivers of host shifts and environmental transitions. They also provide useful features in the quest to decipher the proximate mechanisms of parasite-induced phenotypic alterations and better understand the evolution of behavioral manipulation. From an applied perspective, acanthocephalans' ability to accumulate contaminants offers useful opportunities to monitor the impacts - and evaluate the possible mitigation - of anthropogenic pollutants on aquatic fauna and develop the environmental parasitology framework. However, exploring these exciting research avenues will require connecting fragmentary knowledge by enlarging the taxonomic coverage of molecular and phenotypic data. In this opinion paper, we highlight the needs and opportunities of research on Acanthocephala in three main directions: (i) integrative taxonomy (including non-molecular tools) and phylogeny-based comparative analysis; (ii) ecology and evolution of life cycles, transmission strategies and host ranges; and (iii) environmental issues related to global changes, including ecotoxicology. In each section, the most promising ideas and developments are presented based on selected case studies, with the goal that the present and future generations of parasitologists further explore and increase knowledge of Acanthocephala.


Title: Accrocher la communauté scientifique à des vers à la tête pleine d'épines : faits intéressants et passionnants, lacunes dans les connaissances et perspectives pour des orientations de recherche sur les Acanthocéphales. Abstract: Bien que l'intérêt pour les acanthocéphales semble n'avoir atteint qu'un petit nombre de chercheurs dans le monde, nous montrons dans cet article que ce groupe de parasites est composé d'excellents organismes modèles pour étudier les questions en suspens en biologie moléculaire et cytogénétique, écologie évolutive et écotoxicologie. Leur ascendance partagée avec les rotifères en fait un groupe idéal pour explorer les origines du mode de vie parasitaire et les moteurs évolutifs des changements d'hôtes et des transitions environnementales. Ils présentent également des caractéristiques intéressantes pour l'étude des mécanismes proximaux sous-tendant les altérations phénotypiques induites par les parasites, et ainsi mieux comprendre l'évolution de la manipulation comportementale. D'un point de vue appliqué, la capacité des acanthocéphales à accumuler les contaminants offre des opportunités utiles pour surveiller les impacts - et évaluer les possibilités d'atténuation - des pollutions anthropiques sur la faune aquatique et développer le domaine de la parasitologie environnementale. Cependant, l'exploration de ces pistes de recherche passionnantes nécessitera de relier des connaissances fragmentaires en élargissant la couverture taxonomique des données moléculaires et phénotypiques. Dans cet article, nous présentons l'état actuel de la recherche sur les acanthocéphales selon trois axes principaux : (i) la taxonomie intégrative (y compris les outils non-moléculaires) et la phylogénie à des fins d'analyse comparative ; (ii) l'écologie et l'évolution des cycles de vie, des stratégies d'exploitation des hôtes et de transmission ; (iii) les questions environnementales liées aux changements globaux, y compris l'écotoxicologie. Dans chaque section, nous soulignons les besoins et les opportunités, en espérant que cela incitera une nouvelle génération de parasitologues à s'intéresser aux acanthocéphales.


Assuntos
Acantocéfalos , Parasitos , Rotíferos , Animais , Acantocéfalos/genética , Filogenia
9.
Sci Rep ; 13(1): 9474, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301923

RESUMO

In lotic freshwater ecosystems, the drift or downstream movement of animals (e.g., macroinvertebrates) constitutes a key dispersal pathway, thus shaping ecological and evolutionary patterns. There is evidence that macroinvertebrate drift may be modulated by parasites. However, most studies on parasite modulation of host drifting behavior have focused on acanthocephalans, whereas other parasites, such as microsporidians, have been largely neglected. This study provides new insight into possible seasonal and diurnal modulation of amphipod (Crustacea: Gammaridae) drift by microsporidian parasites. Three 72 h drift experiments were deployed in a German lowland stream in October 2021, April, and July 2022. The prevalence and composition of ten microsporidian parasites in Gammarus pulex clade E varied seasonally, diurnally, and between drifting and stationary specimens of G. pulex. Prevalence was generally higher in drifting amphipods than in stationary ones, mainly due to differences in host size. However, for two parasites, the prevalence in drift samples was highest during daytime suggesting changes in host phototaxis likely related to the parasite's mode of transmission and site of infection. Alterations in drifting behavior may have important implications for G. pulex population dynamics and microsporidians' dispersal. The underlying mechanisms are more complex than previously thought.


Assuntos
Anfípodes , Microsporídios , Parasitos , Animais , Anfípodes/parasitologia , Ecossistema , Estações do Ano , Interações Hospedeiro-Parasita , Crustáceos
10.
Trends Parasitol ; 39(6): 461-474, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061443

RESUMO

Anthropogenic stressors are causing fundamental changes in aquatic habitats and to the organisms inhabiting these ecosystems. Yet, we are still far from understanding the diverse responses of parasites and their hosts to these environmental stressors and predicting how these stressors will affect host-parasite communities. Here, we provide an overview of the impacts of major stressors affecting aquatic ecosystems in the Anthropocene (habitat alteration, global warming, and pollution) and highlight their consequences for aquatic parasites at multiple levels of organisation, from the individual to the community level. We provide directions and ideas for future research to better understand responses to stressors in aquatic host-parasite systems.


Assuntos
Parasitos , Animais , Parasitos/fisiologia , Ecossistema , Organismos Aquáticos
11.
Sci Rep ; 13(1): 1054, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658208

RESUMO

Stable isotope analysis of individual compounds is emerging as a powerful tool to study nutrient origin and conversion in host-parasite systems. We measured the carbon isotope composition of amino acids and glucose in the cestode Schistocephalus solidus and in liver and muscle tissues of its second intermediate host, the three-spined stickleback (Gasterosteus aculeatus), over the course of 90 days in a controlled infection experiment. Similar linear regressions of δ13C values over time and low trophic fractionation of essential amino acids indicate that the parasite assimilates nutrients from sources closely connected to the liver metabolism of its host. Biosynthesis of glucose in the parasite might occur from the glucogenic precursors alanine, asparagine and glutamine and with an isotope fractionation of - 2 to - 3 ‰ from enzymatic reactions, while trophic fractionation of glycine, serine and threonine could be interpreted as extensive nutrient conversion to fuel parasitic growth through one-carbon metabolism. Trophic fractionation of amino acids between sticklebacks and their diets was slightly increased in infected compared to uninfected individuals, which could be caused by increased (immune-) metabolic activities due to parasitic infection. Our results show that compound-specific stable isotope analysis has unique opportunities to study host and parasite physiology.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Parasitos , Smegmamorpha , Animais , Humanos , Infecções por Cestoides/parasitologia , Isótopos de Carbono , Carbono , Aminoácidos , Cestoides/fisiologia , Smegmamorpha/parasitologia , Nutrientes , Interações Hospedeiro-Parasita , Doenças dos Peixes/parasitologia
12.
Sci Total Environ ; 859(Pt 2): 160185, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395831

RESUMO

The overflow of stormwater retention basins during intense and prolonged precipitation events may result in the direct input of particulate pollutants and remobilization of already sedimented particle-bound pollutants to receiving freshwater bodies. Particle-bound pollutants may cause adverse effects on aquatic biota, particularly sediment dwellers. Therefore, we investigated the sediment pollution load of a stream connected to the outfalls of two stormwater basins to determine the impact of the basins' discharges on the metal and organic pollutant content of the sediment. Also, the possible adverse effects of the pollutant load on benthic dwellers were evaluated in sediment toxicity tests with Lumbriculus variegatus and the effects on its growth, reproduction and the biomarkers catalase, acetylcholinesterase and metallothionein were analyzed. The results showed that the retention basins contained the highest load of pollutants. The pollutant load in the stream did not show a clear pollution pattern from the inlets. However, metal enrichment ratios revealed contamination with Cu, Pb and Zn with Pb and Zn above threshold effect concentrations in all sites. Ecotoxicity results showed that the retention basin samples were the most toxic compared to sediment from the stream. Exposure experiments with the stream sediment did not show considerable effects on reproduction, catalase activity and metallothionein concentration. However, modest inhibitions of growth and activity of acetylcholinesterase were detected. Based on the observed results, it cannot be concluded that overflows of the retention basin are responsible for the pollutant contents downstream of their inlet. Other sources that were not considered in this study, such as diffuse input, historic pollution and point sources further upstream as well as along the stream, are likely the major contributors of pollutant load in the sediment of the studied transects of the stream. Additionally, the observed results in the stormwater basin sediment further highlight their importance in retaining particle-bound pollutants and preventing ecotoxicological effects from receiving surface water bodies.


Assuntos
Poluentes Ambientais , Oligoquetos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água , Acetilcolinesterase , Ecotoxicologia , Metais/análise , Sedimentos Geológicos
13.
Sci Total Environ ; 863: 160727, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36502976

RESUMO

Marine bioinvasions are of increasing attention due to their potential of causing ecological and economic loss. The seaweed Gracilaria vermiculophylla has recently invaded the Baltic Sea, where, under certain conditions, it was found to outcompete the native alga Fucus vesiculosus. Parasites of grazers and temperature are among the potential factors which might indirectly modulate the interactions between these co-occurring algae through their single and combined effects on grazing rates. We tested the temperature and parasitism effects on the feeding of the gastropod Littorina littorea on F. vesiculosus vs. G. vermiculophylla. Uninfected and trematode-infected gastropods were exposed to 10, 16, 22, and 28 °C for 4 days while fed with either algae. Faeces production was determined as a proxy for grazing rate, and HSP70 expression, glycogen and lipid concentrations were used to assess the gastropod's biochemical condition. Gracilaria vermiculophylla was grazed more than F. vesiculosus. Trematode infection significantly enhanced faeces production, decreased glycogen concentrations, and increased lipid concentrations in the gastropod. Warming significantly affected glycogen and lipid concentrations, with glycogen peaking at 16 °C and lipids at 22 °C. Although not significant, warming and trematode infection increased HSP70 levels. Increased faeces production in infected snails and higher faeces production by L. littorea fed with G. vermiculophylla compared to those which fed on F. vesiculosus, suggest parasitism as an important indirect modulator of the interaction between these algae. The changes in the gastropod's biochemical condition indicate that thermal stress induced the mobilization of energy reserves, suggesting a possible onset of compensatory metabolism. Finally, glycogen decrease in infected snails compared to uninfected ones might make them more susceptible to thermal stress.


Assuntos
Alga Marinha , Caramujos , Animais , Temperatura , Homeostase , Lipídeos
14.
Sci Total Environ ; 858(Pt 3): 159946, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343811

RESUMO

Although parasitism is one of the most common species interactions in nature, the role of parasites in their hosts' thermal tolerance is often neglected. This study examined the ability of the trematode Podocotyle atomon to modulate the feeding and stress response of Gammarus locusta towards temperature. To accomplish this, infected and uninfected females and males of Gammarus locusta were exposed to temperatures (2, 6, 10, 14, 18, 22, 26, 30 °C) for six days. Shredding (change in food biomass) and defecation rates (as complementary measure to shredding rate) were measured as proxies for feeding activity. Lipid and glycogen concentrations (energy reserves), catalase (oxidative stress indicator), and phenoloxidase (an immunological response in invertebrates) were additionally measured. Gammarid survival was optimal at 10 °C as estimated by the linear model and was unaffected by trematode infection. Both temperature and sex influenced the direction of infection effect on phenoloxidase. Infected females presented lower phenoloxidase activity than uninfected females at 14 and 18 °C, while males remained unaffected by infection. Catalase activity increased at warmer temperatures for infected males and uninfected females. Higher activity of this enzyme at colder temperatures occurred only for infected females. Infection decreased lipid content in gammarids by 14 %. Infected males had significantly less glycogen than uninfected, while infected females showed the opposite trend. The largest infection effects were observed for catalase and phenoloxidase activity. An exacerbation of catalase activity in infected males at warmer temperatures might indicate (in the long-term) unsustainable, overwhelming, and perhaps lethal conditions in a warming sea. A decrease in phenoloxidase activity in infected females at warmer temperatures might indicate a reduction in the potential for fighting opportunistic infections. Results highlight the relevance of parasites and host sex in organismal homeostasis and provide useful insights into the organismal stability of a widespread amphipod in a warming sea.


Assuntos
Anfípodes , Temperatura , Trematódeos , Lipídeos , Anfípodes/parasitologia , Anfípodes/fisiologia , Comportamento Alimentar , Masculino , Feminino , Animais , Glicogênio/metabolismo , Estresse Fisiológico
15.
Environ Pollut ; 314: 120317, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191796

RESUMO

Ecotoxicological effects of photolytic degradation mixtures of the two brominated flame retardants PolymericFR and Tetrabromobisphenol A-bis (2,3-dibrom-2-methyl-propyl) Ether (TBBPA-BDBMPE) have been studied in vitro and in vivo. Both substances were experimentally degraded separately by exposure to artificial UV-light and the resulting degradation mixtures from different time points during the UV-exposure were applied in ecotoxicological tests. The in vitro investigation showed no effects of the degraded flame retardants on the estrogenic and androgenic receptors via the CALUX (chemically activated luciferase gene expression) assay. Short-term exposures (up to 96 h) of Lumbriculus variegatus lead to temporary physiological reactions of the annelid. The exposure to degraded PolymericFR lead to an increased activity of Catalase, while the degradation mixture of TBBPA-BDBMPE caused increases of Glutathione-S-transferase and Acetylcholine esterase activities. Following a chronic exposure (28 d) of L. variegatus, no effects on the growth, reproduction, fragmentation and energy storage of the annelid were detected. The results indicate that the experimental degradation of the two flame retardants causes changes in their ecotoxicological potential. This might lead to acute physiological effects on aquatic annelids, which, however, do not affect the animals chronically according to our results.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Naled , Bifenil Polibromatos , Animais , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Catalase , Acetilcolina , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/química , Polímeros , Éteres , Transferases , Glutationa , Esterases , Hidrocarbonetos Bromados/análise
16.
Mar Pollut Bull ; 184: 114110, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126479

RESUMO

Environmental parasitology developed as a discipline that addresses the impact of anthropogenic activities related to the occurrence and abundance of parasites, subsequently relating deviations of natural parasite distribution to environmental impact. Metals, often considered pollutants, might occur under natural conditions, where concentrations might be high due to a natural geogenic release rather than anthropogenic activities. We specifically investigated whether naturally occurring high levels of elements might negatively affect the parasite community of the intertidal klipfish, Clinus superciliosus, at different localities along the South African coast. Parasite communities and element concentrations of 55 klipfish (in muscle and liver) were examined. Our results show that parasites can disentangle anthropogenic input of elements from naturally occurring high element concentrations. Acanthocephala, Cestoda and Isopoda were associated with higher concentrations of most elements. Environmental parasitology, applicable to a wide range of systems, is scarcely used on marine ecosystems and can contribute to environmental monitoring programs.


Assuntos
Poluentes Ambientais , Parasitos , Animais , Ecossistema , Efeitos Antropogênicos , Monitoramento Ambiental/métodos
17.
Parasitology ; 149(13): 1729-1736, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36117283

RESUMO

We conducted a molecular survey on microsporidian diversity in different lineages (operational taxonomic units = OTUs) of Asellus aquaticus from 30 sites throughout Europe. Host body length was determined, and DNA was extracted from host tissue excluding the intestine and amplified by microsporidian-specific primers. In total, 247 A. aquaticus specimens were analysed from which 26.7% were PCR-positive for microsporidians, with significantly more infections in larger individuals. Prevalence ranged between 10 and 90%. At 9 sites, no microsporidians were detected. A significant relationship was found between the frequency of infected individuals and habitat type, as well as host OTU. The lowest proportion of infected individuals was detected in spring-habitats (8.7%, n = 46) and the highest in ponds (37.7%, n = 53). Proportion of infected individuals among host OTUs A, D and J was 31.7, 21.7 and 32.1%, respectively. No infections were detected in OTU F. Our results are, however, accompanied by a partially low sample size, as only a minimum of 5 individuals was available at a few locations. Overall, 17 different microsporidian molecular taxonomic units (MICMOTUs) were distinguished with 5 abundant isolates (found in 4­17 host individuals) while the remaining 12 MICMOTUs were "rare" and found only in 1­3 host individuals. No obvious spatio-genetic pattern could be observed. The MICMOTUs predominantly belonged to Nosematida and Enterocytozoonida. The present study shows that microsporidians in A. aquaticus are abundant and diverse but do not show obvious patterns related to host genetic lineages or geography.


Assuntos
Isópodes , Microsporídios , Humanos , Animais , Microsporídios/genética , Primers do DNA , Ecossistema , Geografia , Filogenia
18.
Dis Aquat Organ ; 150: 125-130, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924796

RESUMO

The release of ornamental pets outside their native range can directly or indirectly impact the recipient community, e.g. via the co-introduction of associated pathogens. However, studies on parasites associated with non-native species, in particular freshwater decapods, have focused mainly on a limited set of pathogens. Here we provide data for the first time on microsporidian parasites of the non-native ornamental shrimp Neocaridina davidi, collected in a stream in Germany. Furthermore, we confirm an ongoing range expansion of the warm-adapted N. davidi from thermally polluted colder water. In the investigated shrimps, the microsporidian parasite Enterocytozoon hepatopenaei and an unknown microsporidian isolate were detected, raising concerns about their transmission potential and pathogenicity on native crustacean species.


Assuntos
Decápodes , Enterocytozoon , Microsporídios , Penaeidae , Animais , Enterocytozoon/genética , Penaeidae/parasitologia , Reação em Cadeia da Polimerase/veterinária , Rios
19.
Parasitology ; 149(14): 1822-1828, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35993340

RESUMO

Interest in local environmental conditions and the occurrence and behaviour of parasites has increased over the last 3 decades, leading to the discipline of Environmental Parasitology. The aim of this discipline is to investigate how anthropogenically altered environmental factors influence the occurrence of parasites and how the combined effects of pollutants and parasites affect the health of their hosts. Accordingly, in this paper, we provide an overview of the direct and indirect effects of pollutants on the occurrence and distribution of fish parasites. However, based on current knowledge, it is difficult to draw general conclusions about these interdependencies, as the effects of pollutants on free-living (larval) parasite stages, as well as their effects on ectoparasites, depend on the pollutant­host­parasite combination as well as on other environmental factors that can modulate the harmful effects of pollutants. Furthermore, the question of the combined effects of the simultaneous occurrence of parasites and pollutants on the physiology and health of the fish hosts is of interest. For this purpose, we differentiate between the dominance effects of individual stressors over other, additive or synergistically reinforcing effects as well as combined antagonistic effects. For the latter, there are only very few studies, most of which were also carried out on invertebrates, so that this field of research presents itself as very promising for future investigations.


Assuntos
Poluentes Ambientais , Doenças dos Peixes , Parasitos , Animais , Peixes/parasitologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita
20.
Sci Total Environ ; 847: 157611, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896135

RESUMO

Due to its ubiquitous presence in wastewaters, wastewater treatment plant effluents and even surface waters, the removal of the pharmaceutical ibuprofen from water is of special interest. Ozonation is widely applied for the treatment of micropollutants in wastewater treatment plants and is already known to also degrade ibuprofen. However, the formation of a wide range of transformation products during such oxidation steps might affect the aquatic environment. This study focuses on the acute ecotoxicological impact of the ibuprofen ozonation products on the two model organisms Daphnia magna and Desmodesmus subspicatus. For the identification of possibly ecotoxic products, a new workflow combining ecotoxicological testing, analytical methods and toxicity prediction was applied. Examination at different pH conditions with increasing ozone doses can point to respective products for further systematic examination. Seven ozonation products were confirmed in this study, two of them for the first time. Five previously postulated products were rejected. For pH 7 the inhibition of green algae growth was observed for mixtures oxidized with low ozone doses, while at pH 3 the mixtures with higher ozone doses caused toxic effects on the mobility of daphnids. Together with the analytical measurements in combination with ecotoxicity prediction, six products were identified which might have caused the toxic effect on green algae. However, no assignment to the observed toxic effects on daphnids was possible. The gained results indicate that mixture toxicity might play a role in oxidation processes and needs to be considered in ozonation studies concerning the ecotoxicological impact. Furthermore, the different observed toxicity for the two organisms underlines the importance of using multiple test systems for a comprehensive evaluation of the ecotoxicity during ozonation processes.


Assuntos
Clorófitas , Ozônio , Poluentes Químicos da Água , Purificação da Água , Ibuprofeno/toxicidade , Ozônio/química , Preparações Farmacêuticas , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...